RZWQM simulated effects of crop rotation, tillage, and controlled drainage on crop yield and nitrate-N loss in drain flow
نویسندگان
چکیده
Accurate simulation of agricultural management effects on N loss in tile drainage is vitally important for understanding hypoxia in the Gulf of Mexico. An experimental study was initiated in 1978 at Nashua, Iowa of the USA to study long-term effects of tillage, crop rotation, and N management practices on subsurface drainage flow and associated N losses. The Root Zone Water Quality Model (RZWQM) was applied to evaluate various management effects in several previous studies. In this study, the simulation results were further analyzed for management effects (tillage, crop rotation, and controlled drainage) on crop production and N loss in drain flow. RZWQM simulated the observed increase in N concentration in drain flow with increasing tillage intensity from NT (no-till) to RT (ridge till) to CP (chisel plow) and to MP (moldboard plow). It also adequately simulated tillage effects on yearly drain flow and yearly N loss in drain flow. However, the model failed to simulate lower corn and soybean yields under NT than under MP, CP, and RT. On the other hand, RZWQM adequately simulated lower yearly drain flow and lower flow-weighted N concentration in drain flow under CS (corn–soybean) and SC (soybean–corn) than under CC (continuous corn). The model adequately simulated higher corn yield under CS and SC than under CC. Applying the newly suggested N management practice for the Midwest of controlled drainage, the model simulated a 30% reduction in drain flow and a 29% decrease in N losses in drain flow under controlled drainage (CD) compared to free drainage (FD). With most of the simulations in reasonably close agreement with observations, we concluded that RZWQM is a promising tool for quantifying the relative effects of tillage, crop rotation, and controlled drainage on N loss in drainage flow. Further improvements on simulated management effects on crop yield and N mineralization are needed, however. © 2007 Elsevier B.V. All rights reserved.
منابع مشابه
Simulating management effects on crop production, tile drainage, and water quality using RZWQM–DSSAT
The objective of this study was to explore if more crop-specific plant growth modules can improve simulations of crop yields, and N in tile flow under different management practices compared with a generic plant growth module. We calibrated and evaluated the Root Zone Water Quality Model (RZWQM) with the Decision Support for Agrotechnology Transfer (DSSAT v3.5) plant growth modules (RZWQM–DSSAT...
متن کاملNitrate leaching to subsurface drains as affected by drain spacing and changes in crop production system.
Subsurface drainage is a beneficial water management practice in poorly drained soils but may also contribute substantial nitrate N loads to surface waters. This paper summarizes results from a 15-yr drainage study in Indiana that includes three drain spacings (5, 10, and 20 m) managed for 10 yr with chisel tillage in monoculture corn (Zea mays L.) and currently managed under a no-till corn-soy...
متن کاملEvaluating and predicting agricultural management effects under tile drainage using modified APSIM
An accurate and management sensitive simulation model for tile-drained Midwestern soils is needed to optimize the use of agricultural management practices (e.g., winter cover crops) to reduce nitrate leaching without adversely affecting corn yield. Our objectives were to enhance the Agricultural Production Systems Simulator (APSIM) for tile drainage, test the modified model for several manageme...
متن کاملSimulated N management effects on corn yield and tile-drainage nitrate loss
Thoroughly tested simulation models are needed to help quantify the long-term effects of agriculture. We evaluated the Root Zone Water Quality Model (RZWQM) response to different N management strategies and then used the tested model with observed weather data from 1961– 2003 to quantify long-term effects on corn (Zea mays L.) yield and flow weighted nitrate-N concentration in subsurface “tile”...
متن کاملSimulating nitrate drainage losses from a Walnut Creek watershed field.
This study was designed to evaluate the improved version of the Root Zone Water Quality Model (RZWQM) using 6 yr (1992-1997) of field-measured data from a field within Walnut Creek watershed located in central Iowa. Measured data included subsurface drainage flows, NO3-N concentrations and loads in subsurface drainage water, and corn (Zea mays L.) and soybean [Glycine mar (L.) Merr.] yields. Th...
متن کامل